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GLOBALLY CONVERGENT ALGORITHMS FOR CONVEX PROGRAMMING
by Eric Rosenberg
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Over the years, numerous algorithms have been proposed for

minimizing a nonlinear objective function subject to nonlinear constresints.

Many of these algorithms can be classified as primal approximation
methods. These methods treat the given problem, hereafter referred to
as the primal, by using the current estimate of a primal solution,
poscibly together with other information, such as estimates of the Lagrange
multipliers, to form a constrained minimization subproblem which in some
way approximates the primal. The procedure of solving a sequence of
such approximating subproblems, and perhaps executing other tasks, we
call recursive substitution. For example, with x;, as the current
estimate of a primal solution, we might solve the quadratic subproblem
obtained by linearizing each constraint and the objective function about
x5 and adding to the objective function the term (x-xi)t Gi(x-xi),

where Gi is a positive definite matrix that approximates the Hessian

of the Lagrangian at a Karush-Kuhn-Tucker (K.K.T.) pair [5,6,22,29].
Various non-quadratic subproblems have also been proposed [13,16,24,27].
A1l of the algorithms proposed in these references are pure
recursive substitution schemes, that is, schemes which set X491 equal
to a solution of the approximating subproblem generated from Xy Other
methods require additional computation, such as a line search, to

generate X, ., (7,19,20,30]. Furthermore, the methods of [13,16,2k,

27,29] are one-point methods, that is, methods that use only information
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at the current point. Methods that use quasi-Newton updates [5,6,22)
are not one-point methods, since the Hessian approximation depends on
previous estimates of a K.K.T., pair,

It is reasonable to expect a recursive substitution scheme
to be effective if each subproblem can be easily solved. Notice that
in general a trade-off is inevitable: the easier a particular type of
subproblem is to solve, the less it tends to resemble the primal, and
consequently the more subproblems we expect to have to solve. The
primal itself is of course a perfect approximation and presumably is
difficult to solve, while the subproblem formed by linearizing the
constraints and objective function can be easily solved by linear pro-
gramming, but may be a poor approximation, especially if the functions
defining the primal are highly nonlinear. In particular, approximating
a geometric program by a linear program [3] can be disastrous, and
often it is desirable to approximate a geometric program by another
geometric program, whose constraints and objective function will in
general be nonlinear functions [28]. In this case, each approximating
geometric program has the advantage of a smaller degree of difficulty
than the given problem. There is therefore a need to study general
approximating subproblems.

In order for any algorithm to be used with confidence, it is
necessary to determine under what conditions, if any, the algorithm
generates a sequence of estimates that converges to a solution, and,
if convergence can be established, it is important to determine the

rate of convergence. Most algorithms popular today, and in particular
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most pure recursive substitution schemes, exhibit local convergence.

That is, for any starting primal solution estimate X, in some

neighborhood of a primal stationary point 2z, the algorithm generates

b it S,

a sequence {xi} that converges to z. A local convergence proof

AT
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generally requires strong differentiability assumptions and a good
estimate of a vector of Lagrange multipliers at 2. Rate of convergence

results are necessarily local results, and in fact are usually established

in the course of proving local convergence. In [25], local convergence 4,

i and rate of convergence results are derived for methods utilizing
arbitrary, possibly non-quadratic, approximating subproblems in a one-
point recursive substitution scheme.

E Few researchers have considered the question of global con-

vergence. We will say that a nonlinear programming algorithm is globally

convergent if, for any arbitrary starting primal solution estimate Xy

the algorithm generates a sequence [xi] that converges to a primal

stationary point. A globally convergent algorithm is extremely desirable,

for a locally convergent method might fail miserably if provided with

a poor initial estimate, and a feasible direction method [33] requires ﬂ

an initial feasible point, which might be unavailable or difficult
to compute.

Recently, a globally convergent algorithm employing quadratic
q subproblems has been proposed [7]. Under appropriate hypotheses, the
solution of each quadratic subproblem is shown to generate a descent
direction of an exact penalty function Gp, where p is a fixed

positive real number. That is, let X, be the current estimate of

a solution, let z; solve the quadratic subproblem constructed from




Xy and some positive definite matrix, as described above, and let
d

=2; - x;. Then D, ep(xi) < 0, where Ddf(x) denotes the direc-

i i i
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tional derivative of the function f at the point x in the direction d.

The new estimate is then x =x, + a,d,, where

i+l i SRt

6 (x;, +a.d,) = min 6 (x, +0d,) and 0 <B < + w,
p i i i | o<a<p p i i
We then solve the quadratic subproblem constructed from x1+1 and a

new positive definite matrix, and continue in this fashion, For each
sufficiently large p, this scheme is globally convergent, Moreover,
by using Lagrange multiplier estimates and choosing each G1 properly,
in some neighborhood of a K.K.T. pair (z,u) the line search can be
omitted, and the pure recursive substitution scheme itself generates

a sequence {(xi,vi)} that converges to (z,u) [5,6,22].

In this paper we will generalize the results of [7] to prove
global convergence for recursive substitution schemes utilizing
arbitrary, possibly non-quadratic, approximating subproblems. Alternatively,
our results can be viewed as the global version of the results of [25],
without the restriction to one-point schemes. We will restrict our
attention to solving a convex primal with convex subproblems so that
we can employ the full power of convex analysis and thereby determine
the minimum hypotheses needed to guarantee global convergence. In
particular, the functions defining the primal and each subproblem need
not be differentiable. Our results also prove global convergence of

a new algorithm for geometric programming [28].
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This paper is divided into six sections. In the next two
sections we examine the connection between constrained optimization
problems and exact penalty functions. In Section 4 we consider the
directional derivative of the maximum of a finite collection of convex
functions. We present the global convergence theorem in Section 5.

Section 6 is devoted to concluding remarks.

2. Exact Penalty Functions: Part 1

Our goal is to solve convex program C

minimize fo(x)

subject to fk(x) <0, k

1)2) LT "pl

where, for each k = 0,1,...,p, fk:Rm —- R 1is a convex function. The

solution set of C is the set of all points that solve C.

We associate with program C the exact penalty function ep,

defined by

P
Gp(x) = f5(x) + o Z max(0,f,(x)) ,
k=1
where p 1is a positive real number. The minimum set of Op is
the set of points that minimize ep. We call Op an exact
penalty function because, if the functions [fk] are differen-

tiable, then for each sufficiently large p the minimum set
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= fk(v,'g) = X ma.x(O,fk(v,'E) < 5 ma.x(o,?k(v,';).
keK k<K k=1
Therefore,

~ ~ = ~ 2 - ~
f0(‘,98) iE 8] Z fk(v’s) s fo(v)s) * (] L m&x(ojfk(v)s))’
k<K =]
or equivalently, ®(v) < 5p(v,§).
To prove the theorem, it now suffices to show that cp(xB) < op(v).
We first show that cp(xo) < q>(xB). Since <0 and p > 51, it follows

that p = (B-r-l-¢)/a for some nonnegative number e. We have

o) = 2003 +f5) T 5,605

- ~ .Y'-l-e ~
<f(x,)+(L——> Lix ;s
0 (0 max15k$p k
(since ?k(xo,g) <0 for k = 1,2,..5;0)
i
<fPplx"y8) +p-r-1-c¢
(since 0<a™l max 2(%3) <1 and B-r-1-¢c<0)
1<k<p
= 0 ~ 0
< min w(s) -1+fo(x ,8) - max i‘o(x ,8)
s€S sES
< min o(s) -1<f (xB,?s') = cp(xB),

0]

s€S

that is, cp(xo) < q)(xB).
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Since ¢ 1is convex and x° = tx® + (1-t)v for some t in

(0,1), we have
B 0 B
e(x7) < to(x”) + (1-t) o(v) < to(x") + (1-t) o(v) ,
or equivalently, @(xB) < ¢(v). Since we have shown that ¢(v) < 5p(v,§)
and since ¢(xB) = 5p (xB,E), it follows that ép(xB,E) < 5p(v,§),

which proves the theorem. ®

COROLLARY 1.1, Suppose that program C is superconsistent and has a

nonempty solution set. Then there is a positive number O such that,
whenever p > p,, each minimum of the function ep is also a solution

of program C.

Proof. The result follows from Theorem 1 by deleting all references
to the variable s and the set S and replacing each fk(x,s) with
fk(x) for k =0,1,...,p. Notice that the result holds even if the

solution set of C is unbounded. (This corollary appears in [31].) ®

3. Exact Penalty Functions: Part 2,

To prove the converse of Theorem 1, we will require several
results from convex analysis [26], Let f be a convex function. The

*
vector x 1is said to be a subgradient of f at the point x if

*
£f(y) > £(x) + (x ,y-x) for every y. The set of all subgradients of

s




f at x 1is called the subdifferential of f at x, and is denoted

by Jf(x). For each x, d3f(x) is a nonempty and compact convex set
(Theorem 23.4, [26]). Moreover, f is differentiable at x if and
only if of(x) = {Vf(x)). Clearly, df(ax) = o 3f(x) for each x

and each positive number a.

LEMMA 35, Let fl’ f2, aalely fn be convex functions and let

f=f F f2 + eee + fn. Then for each x we have

1
Af(x) = Bfl(x) + Bfe(x) +oeee + Bfn(x) e

Prcof. See Theorem 23,8, Rockafellar [26]. ®

We say that the function f:Rm - R U (+»} is proper if f

is convex and if f(x) < +» for at least one x. If £:R® 5 R U (4w}
is a convex function, we define the closure of f to be that function
1

whose epigraph is the closure in Rm+ of the epigraph of f. It

follows that a proper convex function is closed if and only if it is

lower semicontinuous.

Let f:R" >RU {+od be a convex function. The conjugate
function f* is defined on R" by f*(x*) = sup( (x*,x) - f(x)|x€ R},
The conjugate f* is a closed convex function, proper if and only if
f is proper. If f ié a closed proper convex function, then the

* * ¥
conjugate of f is f, that is, (f ) = f. Therefore, the conjugacy

*
operation f —»f induces a one-to-one symmetric correspondence in

*
the class of all closed proper convex functions on R®. Since f

13
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* *
may not be finite valued, the subdifferential Of (x ) may be empty
*
for some x . However, if f 1is a closed proper convex function,
*, #* *
then x € Of (x ) if and only if x € of(x).

If X 1is a convex set in Rm, the indicator function of X,

m

denoted by &(°]X), is defined on R by

0 if xe€X
5(x|X) =
+ »  otherwise.

There is an obvious one-to-one correspondence between a convex set
and its indicator function, namely, 6(x|Xl) = s(x|x2) for every «x

if and only if Xl = X2. The conjugate transform of 6(-|X) is called

* *
the support function of X. We have & (x |X) = sup{(x*,x) - 6(x|X)|x€Rm]
* *
= sup{(x ,x)|x € X}). If X 1is also closed, then &(-|X) and & (-|X)

are conjugate to each other (Theorem 13.2, [26]). Therefore, if X,

*, ¥ % %
and X, are closed convex sets, we have b (x |X1) =5 (x |X2) for

*
every x if and only if Xl = X2.

Let f be a (finite valued) convex function. It can be shown

(Theorem 23.4, [26]) that,for each x and d and each sequence

{ai] CR with 0< Y <o, and 1imi_*n o, = o,
f(x + aid) - f£(x)
lim
i -5 ai

exists and is finite. We call this limit the directional derivative

1k
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of f 1in the direction d at the point x, and denote it by

Ddf(x). Moreover, for each fixed x and 4,

gla) = £x* ag) - £(x)

is nondecreasing on {a € R|a > 0}; also, for each o > 0 we have

Dadf(x) = aDdf(x). We say that the direction d is a descent direction

of f at the point x if Ddf(x) < 0, in which case the continuity

of f implies f(x + ad) < f(x) for all sufficiently small positive a.

LEMMA L4, Let f be a convex function. Then for each x and 4

we have Ddf(x) = max{ (x*,d)|x* € of(x)].
Proof. See Theorem 23.4, Rockafellar (26]. ®

Although a stronger version of our next theorem appears in
[23], our result has a particularly simple proof and is adequate

for our purposes.

THEOREM 2, Let f be a convex function and let g = max(0,f).
Then dg(x) is nonempty for every x and

1) dg(x) = (0} if f£(x) <0
11) dg(x) D(x |0<a<1l and x € 3f(x)) if £(x) =0

ii1) dg(x) = df(x) i 2(x) > 0.

15




Proof. It follows from the above remarks that Jdg(x) is nonempty,
closed, convex, and bounded for all x.
i) Suppose f(x) < 0. Then for each z in some neighborhood of

x we have g(z) = 0. Therefore, for each d we have
* *
0 = Ddg(x) = max{(x ,d)|x € dg(x)) .

It follows that Jg(x) = {0}, which proves i).

*
ii) Suppose f(x) = 0. Choose x in of(x). Then

2y 226) » = yex) = x", gox)

*
for each y. If (x ,y-x) >0, then £(y) >0, so that
* *
8(y) = £(y) > £(x) + (x ,y-x) >g(x) + (ax ,y-x)

*
for each o in [0,1]; hence ax € dg(x). On the other

*
hand, if (x, y-x) < 0, then

g(y) = max(0,£(y)) > max(0, {x ,y-x)) = 0

n

*
max(O,(ax*,y-x) > g(x) + (m ,y-x) for each a >O0.
Hence ox € dg(x) whenever a €[0,1], which proves ii).

iii) Suppose f(x) > 0., Then for each 2z in some neighborhood of x
we have g(z) = f(z). Therefore, for each d we have
Ddf(x) = Ddg(x). It follows from Lemma 4 and the above remarks

that Jg(x) = df(x), which proves iii). ®

16
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A remarkable feature of convex programming is the existence

of necessary and sufficient conditions for optimality, even in the

absence of differentiability. Consider again convex program C:

minimize fo(x)

subject to fk(x) £0;,  K=1B0 ey Ps

If C is actually an unconstrained minimization problem, we call the

solution set the minimum set.

LEMMA 5. Let f be a convex function., Then the minimum set of f
*

is f (0); in particular, the infimum of f is attained if and only

*
if of (0) is nonempty.

Proof. See Theorem 27.1, Rockafellar [26]. ®

We say that a vector u in RP is a vector of Lagrange multipliers
for Cif u > ) and if the infimum of the function f +u1f teeo+y f
- 0 1 PP
is finite and equal to the optimal objective function value of C. We
define the Lagrangian function L on R® x rP by
fo(x) + vlfl(x) dooet vpfp(x) if v>0
L(x,v) =
- ® otherwise.

The pair (z,u) 1is said to be a saddlepoint of L (with respect to
maximizing in v and minimizing in x) if for every x and v we

have L(z,v) < L(z,u) < L(x,u).
a7




LEMMA 6. The point z solves Cand u is a vector of Lagrange
multipliers for C if and only if (z,u) is a saddlepoint of the
Lagrangian L. This condition holds if and only if the following

Karush-Kuhn-Tucker (K.K.T.) conditions hold:

i) w >0 and fk(z) <0, X = 1,2,00059

ii) ukfk(Z) =0, k =1,2,.0.5p

iii) o€ afo(z) tuy afl(x) +eoet u, afp(z).

(If 1), ii), iii) hold, we call (z,u) a K.K.T. pair.) Moreover,

if C is superconsistent, then 2z solves C if and only if there is a

(or equivalently, if (z,u) is a K.K.T. pair), and the set of
Lagrange multipliers is identical to the set of points maximizing

(over all v) the function min . L(x,v).
xR

Proof. See Theorems 28.2 and 28.3 and Corollaries 28.3.1 and 28.k4.1, j

Rockafellar [26]. ®

We now prove the main result of this section, the converse

of Theorem 1.

vector u such that (z,u) is a saddlepoint of the Lagrangian L
1

1

|

THEOREM 3. Under the hypotheses of Theorem 1, there is a nonnegative ;
1

number @. such that, whenever p > 52 and s € S, each solution of

2
program C(s) is also a minimum of the function ép(-,s).

18




Proof. By Lemma 1, for each s in S the set of Lagrange multipliers
U(s) 1is nonempty and closed at s, and uniformly bounded near s.
Therefore, by Lemma 2, for some nonnegative number 62 we have

% p, = max o(llull_|u € U(s)).

! We claim that 52 is the desired constant. To see this, :
1 choose s in S and p > 52. Let z be a solution of C(3) and

let u belong to U(s). Let

K_ = (k€(L,2,...,p)|E (2,5) <0},
: K {k€{1,2,...,p]|i‘k(“z,§) =0},
: and —y

K, = [ke[l,z,...,p}li‘k(z,s) >0} .

Then K, is empty and wuw, =0 for each k in K_, by Lemma 6. Hence, by

Lemma 6 again, we have

0 € 32, (3,3) + é‘l s 38,50 - 2GH) + T u BGD

= BEO(E,E) +p kGZKO {akx;:|o <q<1l and x; € ai‘k(E,E)]

c 8.(z,53) ,
o}
where the final assertion follows from Theorem 2 and Lemma 5. There-

- ~ o~ ~ * ~
fore, O € aep(z,s), which implies that z € abp(o,s). By Lemma 5, | 4

% 1is a minimum of & (*,s), which proves the theorem. ®
| P
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COROLLARY 3.1. Under the hypotheses of Theorem 1, there is a positive

number 53 such that, whenever p > 55 and s € S, the solution set

of ((s) and the minimum set of ép(-,s) coincide.

Proof. 1In light of Theorems 1 and 3, it suffices to choose

Py = max(p,,p,). ®

COROLLARY 3.2. Suppose that program C is superconsistent and has a

nonempty and bounded solution set. Then there is a positive number
P3 such that, whenever p > p;, the solution set of C and the minimum

set of Gp coincide.

Proof. Half of this corollary follows directly from Corollary 1.1. The
other set containment follows from Theorem 3 by deleting all references
to the variable s and the set S, and replacing each fk(x,s) with

fk(x) for k=0,%..p- ®

4., Directional Derivatives

We next consider the directional derivative of the maximum of

a finite collection of convex functions.

LEMMA 7. Let f:Rm — R be a convex function. Then for each x and
each ¢ >0 there is a 5 >0 such that Jdf(y) C df(x) + ¢B whenever

¥y € x + 5B, where B = (z¢ R"||lzll < 1), the unit ball in R".

20




Proof. See Corollary 24.5.1, Rockafellar [26]. ®

LEMMA 8. Let f:R" -»R be a convex function. Then the point-to-set

map Of is closed and uniformly bounded on B,

Proof. Since Jf(x) is bounded for each x, it follows immediately
from Lemma 7 that Of is uniformly bounded on R'.
*
To show that Of is closed, let x, —x, let x, € Bf(xi),
* * *
and let x; »x . Then for every y we have f(y) > f(xi) & (xi,y-xi)

for every i, Since f 1is continuous, it follows that

fy) > f(x) + (x*,y-x). Therefore, : - of (x). ®

LEMMA 9. Let (B;} be an infinite sequence of real numbers such that
By4p S By for every i. Suppose some subsequence {Bj] converges

to some number B. Then the entire sequence {B,} converges to B.
i

Proof. Choose € > 0. Since 1lim, B. = B, for some N, we have
s jo o 7j 1
By S B * e. Hence,

1

limsupBiSBN§B+€.
1

i 5w
On the other hand, we must have B < 51 for every i, which implies

that B < lim inf Thus for any € >0 we have

10 Py

Bf_liminfBiSIimsupBi§B+e,

i-ow i-5w

which proves the result. d
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The proof of the following principal result of this section is
fashioned after [2].

THEOREM 4. Let K be a finite set, and let the functions

(£(+,k)|k = K) be convex on R™ Let g be defined on R™ by

g(x) = max{f(x,k)|k € K}, and let I(x) = (k € K|f(x,k) = g(x)).

Then for each x and d the directional derivative Ddg(x) is finite,

and Ddg(x) = max{Ddf(x,k)|k € I(x)}.

Proof. Choose x and d. Since g is convex, the directional
derivative Ddg(x) exists and is finite. Since Dadg(x) = aDdg(x)
whenever «a > 0, it suffices to prove the result for the case

all = 1. Let X; =x + ad, where 0 <a,,

i+1 By o ¥
and llall = 1. Then for each i we have (xi-x)/(”xi-x“) = d (since

< oy and 1i a. =0,
”d” =1, we can interpret the components of d as direction cosines).
Choose k,; in I(xi) and choose k in I(x).

For each i we have

g(xi) i g(X)
o

i

% f(xi)ki) = f(xi)k) + f(xi,k) - f(x,k)
e o, Qa

i
f(xi’ k) = f(x; k)
a

v

7 (since k, € I(xi))

x, x, -x)

v

i

*
= for every x in Jf(x,k) .

|
e
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Since (xi-x)/ai = d for every i, we have

g(x;) - g(x) - *
s > 4x .4} for every x in f(x,k),
i

or equivalently,

g(x;) - g(x) . %
o5 > sup{(x ,d)|x <= 3f(x,k)} = D, fx,k) .
1

Since this holds for each i and each k in I(x), it follows that

g(x;) - g(x)
Ddg(x) = 1lim

i-oow i

> max(D £(x,k) [k € I(x)) .

To prove the reverse inequality, we first observe that, since
K is finite, for some subsequence x:j (where j -+ x) and some ko
in K we have ko € I(xj). Since f(:,k) and g are continuous

functions for each k, it follows that

g(x) = lim g(x

j o

Jo=. 3 f(xj,ko) = Hew®)

o

J

Therefore, X e I(x). For each j, we have,

0 0 *
s(xj) - g(x) . f(xiik ) « £lx, k") ’ §fj’xj
a. a = a.
J J J

-x)

*
= <x.ud>

*
for every Xy in bf(xj,ko). That is,

g(x,) - g(x) P
— sup{(xj,d)lx; & af(xj,ko)} - Ddf(xj,ko) .

J
e




A e Mo

Since bf(',ko) is closed at x and uniformly bounded near x, it
follows from Lemma 2 that (for fixed d) the directional derivative

Ddf(x,ko) is upper semicontinuous at x. Therefore, by Lemma 9,

we have
g(x;) - &(x)
Ddg(x) R
i o 3
g(x.) - g(x) 0
= lim ——J—a——— < 1im sup Ddf(xj,k )
Jow> | J o

< D,£(x,k%) < max(D£(x,k) [k € I(x)),

where the final inequality follows as 10 ¢ I(x). Thus we have shown

that

max(D,f(x,k) |k € I(x)) < Dglx) < max{Ddf(x,k)lk g T(x)} ,

which proves the theorem. d

5. The Global Convergence Theorem

In Sections 2 and 3, we considered the family [é(s)ls € S}
of constrained minimization problems, where the perturbation space §
is a compact subset of R". Suppose now that, for each s, C(s) is
easily constructed from C, c (s) resembles C, and C(s) is easier
to solve than C. We may then regard é(s) as an approximating sub-
problem, and expect that its solution helps us to solve C. Indeed,
we will show that, under appropriate hypotheses, solving é(s)
generates a descent direction of ep, the exact penalty function for

the primal C.
24

|
:
ii
1
|




In primal approximation methods, the perturbation s always

supplies an estimate of a primal solution, and may also supply other
information, such as an approximation of the Hessian of the Lagrangian.
Accordingly, we will write S =Y X W, where Y C R" and W< RY

for some q >0, If s€ S, we will write s = (y,w), where y € Y

and wWE W, By q=0 wemean W = ¢, in which case we disregard W
and w, so that (y,w) € Y x W will mean y € Y. For each k=0,1,...,p

we will write f‘k(x,y,w), instead of fk(x,s). We will also write
C(s) as Cly,w):

minimize fo(x,y,w)
x

subject to f‘k(x,y,w) <0, kK = 52,50 e

In constructing é(y,w) , we will always set y equal to the current
estimate of a primal solution, while w may be any arbitrary element
of the compact, possibly empty, set W,

For instance, we can generate quadratic subproblems as follows
[7]. Suppose the functions {fk] defining C are continuously differ-
entiable. Let a and b be positive numbers, and let ‘8 be the

collection of symmetric m X m matrices satisfying

allxll2 < (x,Gx) < b(lxl|2 for every x .

Let x4 be the current estimate of a primal solution and let (?vi € g
be the current approximation of the Hessian of the Lagrangian. We

form the quadratic subproblem QP(xi,Gi) by defining

a2y
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- 1
fo(x,xi,Gi) = fo(xi) + <Vf0(xi)’ x-xi) +3 (x-xi,Gi(x-xi))
and

f'k(x,xi,ci) = fk(xi) + (ka(xi),x-xi) FREE T 0

Returning to the general case, the following theorem shows the
crucial role of each approximating subproblem C(y,w). If
f‘k:Rm x R" x RY 5 R, we denote by Blf(- ,¥,w) the subdifferential

= m
map with respect to the first argument, so that Blf(x,y,w) CR.

THEOREM 5. Suppose program C is superconsistent. Let

f‘o, fl, gy fp be functions jointly continuous on R™ x R" x RS
such that for each fixed y, w, and k = 0,1,...,p the function
f‘k(',y,w) is convex and Blf'k(y,y,w) = afk(y), and such that for each
X, y, w and k =1,2,...,p we have fk(x,y,w) < fk(x) and
f'k(y,y,w) = fk(y). Let Y be a nonempty and compact subset of R™
and let W be a compact subset of R such that program é(y,w)

has the unique solution z(y,w) whenever (y,w) € Y x W. Let

d(y,w) = z(y,w) - y. Then there is a positive number such that

o
< . >0 g
Da(y,w)?p(¥) <O whenever p > Pz, (y,w) Y x W, and d(y,w) #o0.

Proof. We claim that the value 53 = ma.x(Bl, 52) specified in Corollary
3.1, with S =Y xW, is a satisfactory choice. To see this, choose
(y,w) in Y xW and p> 53. Let z = 2(¥,¥), the unique solutions

of C(y,w). By Corollary 3.1, Z 4is also the unique minimum of
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5p(°,§,;), the exact penalty function for C(y,w). If % # ¥, then
o(:¥,%) <8 (3,5,%). It follows that for each y in

2}
alép (¥,¥,w) we have

~ o~ o~ ~ o~ o~

0 >8,(z,y,w) - 8 (y,y,%) > (y,23) = (v, a),

where d = z-y. Hence, by Lemma 4, we have

~ ~ o~

DB, (3,5,%) = mex((y",a)|y" = 3,3,(,5,W) <o .

~ ~ o~

Since Blfk(y,y,w) = afk(;) for k =0,1,...,p and Ek(;;gs;) = fk(;)
for k =1,2,...,p, it follows from Lemmas 3 and 4 and Theorem 4 that

~ o~ o~

Ddep(;) = Ddé p(y,y,w) < 0, which proves the theorem, 02

The heart of our convergence theorem is the following slight

generalization of Zangwill's convergence theorem [32].

LEMMA 10. Let Y Dbe a nonempty and compact subset of R" and let
W be a compact subset of Rl Let MY xW oY xW bea point-to-set
map. Suppose an algorithm generates the sequence [(xi"i)} according
to the recursion (x1+1’wi+1) g I‘(xi,wi), where (xo,wo) is given.
Suppose that
1) there is a continuous function 6:Y - R such that
i) if x minimizes 6, then the algorithm stops at x
ii) if x does not minimize 6, then whenever (y,u) € I'(x,w)
we have 6(y) < 6(x)
2) I' is closed on Y X W,
Then either the algorithm stops at some point (z,w)
that 2z minimizes 6O, or some subsequence converges to some

such that 2z minimizes 6.
27




Proof. The proof does not differ significantly from that in [32],

and will be omitted. ¢

Though Zangwill's result guarantees only subsequential con-
vergence, the following lemma provides a sufficient condition for

the entire sequence [xi] to converge.

LEMMA 11. Let f ©be a convex function with the unique minimum z.
If the sequence (x,]} satisfies limi_a:of(xi) = £(z), then

limi__)00 xi = z,

Proof. See Corollary 27.2.2, Rockafellar [26]. ®

LEMMA 12, Let Mlzx —»Y and MQ:Y — Z Dbe point-to-set maps.

Let the composition map M2M1:X — Z be defined by

MM, (x) = V(M (y) |y € M (x)) .

Suppose that Ml is closed at x and M2 is closed on Ml(x). If

Y is compact, then MEMi is closed at x.
% Proof. See Corollary 4.2.1, Zangwill [32]. ®

LEMMA 13. Let f:R™ - R be a continuous function and let the point-

to-set map M:R™ x R® 5 R® be defined by

M(x,d) = (y|f(y) = min f(x +ad)} ,
o<a<p

where B 1is a fixed positive number. Then M is closed on

Rm X Rm.




Proof. See Lemma 5.1, Zangwill [32]. ®

LEMMA 14, Let f f2, el fp be convex functions such that

l’
{xlfk(x) <0, k =1,2,...,p) is nonempty and bounded. Then for
each real number « the level set X = [x|2£=1 ma.x(O,fk(x)) < a)

is compact if it is nonempty.

Proof. See Lemma 3.4, Han [7].

We now define the algorithm. Let the positive numbers p
and B, the nonempty and compact set T C Rm, and the compact set
W CR? be given. Choose any (xo,wo) in T X W. Consider the

following idealized algorithm.

Algorithm @: For i =0,1,2,...

1) solve a(xi,wi) to obtain a solution =z let d, =z, -x

iy
2) find an 0o; such that eg(xi + aidi) = min{ep(xi+adi)|0§a§_[3);

let xi+]_ =X + aidi

3) stop if Xi4q = %45 otherwise, return to 1) with X4 replacing

1

and any Ww

141 in W replacing w,.

X5 i

We may now prove the global convergence theorem.
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THEOREM 6. Suppose that program C is superconsistent, that its
objective function fO is bounded below, that its fea:ible region
(x|£,(x) <0, k =1,2,...,p) is bounded, and that it has the
unique solution 2z, Let ?O’ fl, R fp be functions jointly
continuous on R"™ x R® x R? such that for each fixed y, w, and

k =0,1,...,p the function fk(',y,w) is convex and

Blfk(y,y,w) = afk(y), and such that for each x, y, w, and

k =1,2,...,p we have fk(x,y,w) = fk(x) and fk(y,y,w) = fk(y).
Suppose that program E(y,w) has a unique solution whenever

(y,w) € R® x W. Then there is a positive number Py such that,
whenever p > Pg? algorithm @ either stops at the unique solution =z

im. X. = Z.
or 11rnl__>°° i Z

Proof. By Corollary 5.2, there is a positive number 93 such that

z 1is also the unique minimum of Gp whenever p > Let f. be

03' O
bounded below on R" by -, and let

¥ = x| % max(o,fk(x)) < max [j; (fo(x) £a) § max(O,fk(x))]}.
k=1 xT P3 k=1

Clearly, we have T CY. Also, since Z£=l max(O,fk(z)) = 0, we have
z€ Y. By Lemma 14, Y is compact.
Let S=YxW if W#¢, and let S =Y if W =¢. Applying

Corollary 5.1 to the compact set S, we conclude that there is a
positive number 53 such that the minimum set of Eb(-,s) and the
solution set of é(s) coincide whenever p > 53 and s £ S. By
hypothesis, this common set is the singleton (z(s)}. Let

Py = max (1, P3s 53). We will show that p, 1is the desired constant.
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Choose (x ,wb) in T x W, choose p 2 o’ and let
T = [xlap(x) < ep(xo)]. Notice that z C Y, since 0 > p;. We will
show inductively that, if Algorithm @ generates the sequence {(xi,wi)}
(possibly a finite sequence), then (xi} = YO NY. It is clearly
true for x,. Suppose Xy g Y, Ny for j=1,2,...,i, and let
By = z(xi,wi).

Suppose first that z; =X Then di =0, x

i 141 = ¥y and

the algorithm stops. On the other hand, suppose that N # Xy .

By Theorem 5, di =2, - Xy is a descent direction for Op at

X, . Therefore, the line search must generate an X4 such that

ep(xi+1) < Gp(xi). From the induction hypothesis, we have

Qp(xi) < Gp(xo). Hence, Gp(x = ep(xi) < Gp(xo), that is,

i+l

Xi4q € YO. It follows that

kgl nax(0, £, (x;,,))

(6,(xg) = £5(x;,4)) =Eli (£5(xg) = £5(x;49)) * kgl max (0, £} (x5))

p-

ol

=

O+

(ty0ag) + o) + £ unx(0,8,(x;))

P
< ;}3- (29(xg) +0) + T nax(0, 2, (xp))

(since fo(xo) +0>0 and p > max(l,pB))

T »

()]

< max(o= (£,(x) + o) + § max(0, £, (x)] (since x,

x2T °3 x=1

2 §




Therefore, Xy € YO ny.

Let the map D:S —R™ x R® be defined by D(s) = {(x,z(s)-x)},

where s = (x,w), and let the map L:R" x R® - S be defined by
ML®=[&+me%Q+M)= min 6 (x +ad) and w€ W). |
0<a<p

Lastly, let the composition map TS - S be defined by I = LD.
Clearly, if S5 S S, then algorithm @ generates the point Si41
only if s;,, € P(si).

We will verify that the hypotheses of Zangwill's Convergence
Theorem are satisfied for the point-to-set map T' and the continuous

function Gp. Actually, we have already shown that I':S - S and

that S 1is compact.

Suppose that, for some i, the point X,

Since p > Pz, it follows by Corollary 3.2 that x; also solves e, ]

minimizes Gp.

By Lemma 6, there is a vector u of Lagrange multipliers such that

(xi,u) is a K.K.T. pair for C. Since fk(xi’xi’wi) = fk(xi)

for k = 1,2,...,p and Bl?k(xi,xi,wi) = Bfk(xi) for & =0,%.000,
it follows that (xi,u) is also a K.K.T. pair for E(xi,wi)

for any LA in W. Therefore X, = 245 the unique solution of
é(xi,wi). Hence da; =z, - x; =0, and the algorithm stops.

On the other hand, suppose that X, does not minimize 90

Reasoning as above, it follows that Xy does not solve C, and

hence x, does not solve é(xi,wi) for any LA in W. Therefore,
the unique solution 2z, of C(xi,wi) must satisfy z, # X
Since we assumed that an exact line search is executed over a nonempty

interval, it follows from Theorem 5 that Gp(x) < ep(xi) whenever

(x,w) € P(xi,wi).
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Let 0:S > R™ be defined by 0(s) = {z(s))}. Then 0 is

closed on S and uniformly bounded near S, by Lemma 1. Therefore,
by Lemma 2, for some finite number b we have sup{]|z(s)]| |s€S) < b.
Let B = (y = Ryl < b). Then, for each s = (x,w) in S, the
pair (s,z(s)-x) is contained in the compact set S x (B-Y).
Therefore, by Lemmas 1, 12, and 13, the map I' is closed on 8.

Thus the hypotheses of Lemma 10 are satisfied; we conclude that

either the algorithm stops at 2z or some subsequence {x.} converges

J

to z. Since the entire sequence {Gp(xi)} is monotone decreasing,

by Lemma 9 we have

.—
[
8
(¢
~
)
[
N
n
e
[y
)
D
—~
)
N’
]

ep(z) = fo(z) R

It follows from Lemma 11 that limi-»w b'4 z, which proves the

theorem, ®

-

6. Concluding Remarks

It is clear from the proof of Theorem 6 that Po depends
on T and W but not on B. Although the theorem holds for each
positive number B, in practice B should be chosen suitably large
in the hopes of insuring that the line search terminates because
the minimum is reached, and not because the upper bound f is

encountered. Such a choice could only speed the overall convergence.

The requirement that fb be bounded below can always be met
by replacing f; with exp(fb), which is bounded below by zero,
If C has a unique solution, then C will also have a unique solution

when exp(fo) replaces f.




If C has the unique solution 2z, then in theory we can

always insure that the feasible region is bounded by imposing the
single additional constraint (x,x) < c, where c > (z,z), In
practice, a very large value of c¢ should be used. Alternatively,
we could bound the feasible region with linear constraints.

The most restrictive hypothesis is the requirement that each
E(y,w) possess a unique solution. For quadratic subproblems, this
is accomplished by using a positive definite matrix, Notice that
global convergence is assured even if one fixed positive definite
matrix is used for each quadratic subproblem. However, the local
properties of the algorithm will then suffer.

To study the local behavior of a recursive substitution scheme,
it is usual to make strong assumptions, including the requirement that
each fk and ?k be twice differentiable, and that a good estimate
of a Karush-Kuhn-Tucker pair (z,u) be available. Under such con-
ditions, analysis of a recursive substitution scheme utilizing quadratic
subproblems [5,6,22], or arbitrary approximating subproblems in a one-
point scheme [25], has shown that near (z,u) the line search can be
omitted, and the resulting pure recursive substitution scheme generates
a sequence [(xi,vi)] that converges to (z,u). Moreover, a linear,
superlinear, or quadratic convergence rate is possible, depending on
second order conditions. Notice that the multiplier estimates v

i
play a crucial role in the local analysis, yet are not explicitly

considered in our global convergence theorem.




We hope that our global convergence result, motivated by the
need to validate an algorithm for geometric programming (28], will i
inspire additional work in non-quadratic subproblems. In addition, the
results in Sections 2 and 3 suggest a way to solve convex programs with
nondifferentiable constraints. Namely, minimize the exact penalty
function associated with the program, using any available algorithm

for minimizing a nondifferentiable convex function [1,12].
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